Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10842, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735993

RESUMO

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Assuntos
Epitopos de Linfócito T , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Vacinologia/métodos , Modelos Moleculares , Desenvolvimento de Vacinas , Simulação de Dinâmica Molecular , Linfócitos T Citotóxicos/imunologia
2.
J Phys Chem A ; 127(51): 10807-10816, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38108191

RESUMO

This work discusses the electron structure, antioxidative properties, and solvent contribution of two new antioxidant molecules discovered, named S10 and S11, extracted from a medicinal plant called Vatairea guianensis, found in the Amazon rain-forest. To gain a better understanding, a study using density functional theory coupled with the polarizable-continuum model and the standard 6-311++G(d,p) basis set was conducted. The results indicate that S10 has a higher antioxidant potential than S11, confirming the experimental expectations. In the gas phase, the hydrogen atom transfer route dominates the hydrogen scavenging procedure. However, in the water solvents, the antioxidant mechanism prefers the sequential proton loss electron transfer mechanism. Furthermore, the solvent plays a fundamental role in the antioxidant mechanism. The formation of an intramolecular OH···OCH3 hydrogen bond is crucial for accurately describing the hydrogen scavenging phenomenon, better aligning with the experimental data. The results suggest that the two isoflavones investigated are promising for the pharmacologic and food industries.


Assuntos
Antioxidantes , Hidrogênio , Antioxidantes/química , Solventes/química , Ligação de Hidrogênio , Hidrogênio/química , Prótons , Termodinâmica
3.
J Chem Phys ; 156(1): 014305, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998341

RESUMO

The nonlinear optical response, more specifically the Hyper-Rayleigh Scattering (HRS) response of the Brooker's merocyanine, has been calculated at the time-dependent density functional theory level and rationalized in terms of the structural changes and polarization effects induced by applied external electric fields. The structural change leads to large changes in the HRS response, while only slight variations were observed due to the polarization effects on the fixed quinoid form. Considering both structural and polarization contributions concurrently, the HRS response is dominated by cooperative behavior of those effects for weak and intermediate electric field strengths. At the same time, the competition between both effects was a crucial factor in the region of strong electric fields. The obtained results can lead to an easier understanding for upcoming studies considering more realistic models of solvents where it is not simple to disentangle these contributions.

4.
J Chem Inf Model ; 60(2): 1005-1018, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31880447

RESUMO

GABAB is a G protein-coupled receptor that functions as a constitutive heterodimer composed of the GABAB1a/b and GABAB2 subunits. It mediates slow and prolonged inhibitory neurotransmission in the nervous system, representing an attractive target for the treatment of various disorders. However, the molecular mechanism of the GABAB receptor is not thoroughly understood. Therefore, a better description of the binding of existing agonists and antagonists to this receptor is crucial to improve our knowledge about G protein-coupled receptor structure as well as for helping the development of new potent and more selective therapeutic agents. In this work, we used the recent X-ray cocrystallization data of agonists (GABA and baclofen) and antagonists (2-hydroxysaclofen, SCH50911, and CGP54626) bound to the GABAB orthosteric site together with quantum biochemistry and the molecular fractionation with conjugate caps (MFCC) scheme to describe the individual contribution of each amino acid residue involved in the GABAB-ligand interaction, pointing out differences and similarities among the compounds. Our quantum biochemical computational results show that the total binding energy of the ligands to the GABAB ligand pocket, with radius varying from 2.0 to 9.0 Å, is well-correlated with the experimental binding affinity. In addition, we found that the binding site is very similar for agonists or antagonists, showing small differences in the importance of the most significant amino acids. Finally, we predict the energetic relevance of the regions of the five ligands as well as the influence of each protein lobe on GABAB-ligand binding. These results provide important new information on the binding mechanism of the GABAB receptor and should facilitate the development of new chemicals targeting this receptor.


Assuntos
Simulação por Computador , Agonistas dos Receptores de GABA-B/metabolismo , Antagonistas de Receptores de GABA-B/metabolismo , Modelos Moleculares , Receptores de GABA-B/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de GABA-B/química , Termodinâmica
5.
J Mol Model ; 24(8): 211, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30027444

RESUMO

In this work, we demonstrate that the inclusion of long-range interactions has a significant impact on the estimation of ligand-protein binding energies. Within the scope of the electrostatically embedded adaptation of the molecular fragmentation with conjugated caps (EE-AMFCC) scheme, we unveil the role played by long-range contributions in distinct levels of quantum mechanical calculations. As a prototypical system, we consider ibuprofen coupled to the human serum albumin. In particular, we show that some relevant ligand-residue interaction energies can only be accurately captured in density functional theory (DFT) approaches when the electrostatic background is properly represented by an explicit point charge distribution. Graphical Abstract (left) The binding site FA3/FA4 of HSA containing the attached IBU. (right) Absolute value of difference between the biding energies calculated including the electrostatic embedding and the energies calculated without the electrostatic embedding using the HF, B3LYP, CAM-B3LYP, and MP2 methodologies.

6.
J Chem Phys ; 135(14): 144103, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22010694

RESUMO

A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(∗) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(∗) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4 ± 1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM-MM/QM approach gives a good solute polarization and could be considered in obtaining reliable results within the expected QM/MM accuracy. With this electronic polarization, the solvent effects on the electronic absorption spectra and the (15)N magnetic shielding of the diazines in water are well described by using only an electrostatic approximation. Finally, it is remarked that the experimental and theoretical results suggest that the (15)N nuclear magnetic shielding of any diazine has a clear dependence with the solvent polarity but not directly with the solute-solvent hydrogen bonds.


Assuntos
Pirazinas/química , Piridazinas/química , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica , Eletricidade Estática , Água/química
7.
Phys Chem Chem Phys ; 12(42): 14023-33, 2010 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20856965

RESUMO

The solvent effects on the low-lying absorption spectrum and on the (15)N chemical shielding of pyrimidine in water are calculated using the combined and sequential Monte Carlo simulation and quantum mechanical calculations. Special attention is devoted to the solute polarization. This is included by an iterative procedure previously developed where the solute is electrostatically equilibrated with the solvent. In addition, we verify the simple yet unexplored alternative of combining the polarizable continuum model (PCM) and the hybrid QM/MM method. We use PCM to obtain the average solute polarization and include this in the MM part of the sequential QM/MM methodology, PCM-MM/QM. These procedures are compared and further used in the discrete and the explicit solvent models. The use of the PCM polarization implemented in the MM part seems to generate a very good description of the average solute polarization leading to very good results for the n-π* excitation energy and the (15)N nuclear chemical shield of pyrimidine in aqueous environment. The best results obtained here using the solute pyrimidine surrounded by 28 explicit water molecules embedded in the electrostatic field of the remaining 472 molecules give the statistically converged values for the low lying n-π* absorption transition in water of 36 900 ± 100 (PCM polarization) and 36 950 ± 100 cm(-1) (iterative polarization), in excellent agreement among one another and with the experimental value observed with a band maximum at 36 900 cm(-1). For the nuclear shielding (15)N the corresponding gas-water chemical shift obtained using the solute pyrimidine surrounded by 9 explicit water molecules embedded in the electrostatic field of the remaining 491 molecules give the statistically converged values of 24.4 ± 0.8 and 28.5 ± 0.8 ppm, compared with the inferred experimental value of 19 ± 2 ppm. Considering the simplicity of the PCM over the iterative polarization this is an important aspect and the computational savings point to the possibility of dealing with larger solute molecules. This PCM-MM/QM approach reconciles the simplicity of the PCM model with the reliability of the combined QM/MM approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...